Skip to main content

Welkom bij THIM Hogeschool voor Fysiotherapie & Bohn Stafleu van Loghum

THIM Hogeschool voor Fysiotherapie heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL. Heb je een vraag, neem dan contact op met helpdesk@thim.nl.

Registreer

Om ook buiten de locaties van THIM, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van THIM.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top
Gepubliceerd in:

18-09-2020 | Brief Report

Brief Report: Neuroimaging Endophenotypes of Social Robotic Applications in Autism Spectrum Disorder

Auteurs: Antonio Cerasa, Liliana Ruta, Flavia Marino, Giuseppe Biamonti, Giovanni Pioggia

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 7/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

A plethora of neuroimaging studies have focused on the discovery of potential neuroendophenotypes useful to understand the etiopathogenesis of autism and predict treatment response. Social robotics has recently been proposed as an effective tool to strengthen the current treatments in children with autism. However, the high clinical heterogeneity characterizing this disorder might interfere with behavioral effects. Neuroimaging is set to overcome these limitations by capturing the level of heterogeneity. Here, we provide a preliminary evaluation of the neural basis of social robotics and how extracting neural hallmarks useful to design more effective behavioral applications. Despite the endophenotype-oriented neuroimaging research approach is in its relative infancy, this preliminary evidence encourages innovation to address its current limitations.
Literatuur
go back to reference Anzalone, S., Tanet, A., Pallanca, O., Cohen, D., Chetouani, M. (2019). A humanoid robot controlled by neurofeedback to reinforce attention in autism spectrum disorder. Proceedings of the 3rd Italian Workshop on Artificial Intelligence and Robotics, Bari, Italy. Anzalone, S., Tanet, A., Pallanca, O., Cohen, D., Chetouani, M. (2019). A humanoid robot controlled by neurofeedback to reinforce attention in autism spectrum disorder. Proceedings of the 3rd Italian Workshop on Artificial Intelligence and Robotics, Bari, Italy.
go back to reference Chaminade, T., Da Fonsecam D., Rosset, D., Lutcher, E., Cheng, G., Deruelle, C. (2012). FMRI study of young adults with autism interacting with a humanoid robot, in Procedings of the 21st IEEE International Symposium on Robot and Human Interactive Communication, (Paris: IEEE). 380–385. Chaminade, T., Da Fonsecam D., Rosset, D., Lutcher, E., Cheng, G., Deruelle, C. (2012). FMRI study of young adults with autism interacting with a humanoid robot, in Procedings of the 21st IEEE International Symposium on Robot and Human Interactive Communication, (Paris: IEEE). 380–385.
go back to reference David, N., Schneider, T. R., Peiker, I., Al-Jawahiri, R., Engel, A. K., & Milne, E. (2016). Variability of cortical oscillation patterns: A possible endophenotype in autism spectrum disorders? Neuroscience & Biobehavioral Reviews, 71, 590–600.CrossRef David, N., Schneider, T. R., Peiker, I., Al-Jawahiri, R., Engel, A. K., & Milne, E. (2016). Variability of cortical oscillation patterns: A possible endophenotype in autism spectrum disorders? Neuroscience & Biobehavioral Reviews, 71, 590–600.CrossRef
go back to reference Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–37.CrossRef Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–37.CrossRef
go back to reference Ecker, C. C., & Murphy, D. D. (2014). Neuroimaging in autism-from basic science to translational research. Nature Reviews Neurology, 10(2), 82–91.CrossRef Ecker, C. C., & Murphy, D. D. (2014). Neuroimaging in autism-from basic science to translational research. Nature Reviews Neurology, 10(2), 82–91.CrossRef
go back to reference Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111.CrossRef Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111.CrossRef
go back to reference Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry, 160(4), 636–45.CrossRef Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry, 160(4), 636–45.CrossRef
go back to reference Gottesman, I. I., & Shields, J. J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the USA, 58(1), 199–205.CrossRef Gottesman, I. I., & Shields, J. J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the USA, 58(1), 199–205.CrossRef
go back to reference Goulart, C., Valadão, C., Caldeira, E., & Bastos, T. (2019). Brain signal evaluation of children with autism spectrum disorder in the interaction with a social robot. Biotechnology Research and Innovation, 3, 60–68.CrossRef Goulart, C., Valadão, C., Caldeira, E., & Bastos, T. (2019). Brain signal evaluation of children with autism spectrum disorder in the interaction with a social robot. Biotechnology Research and Innovation, 3, 60–68.CrossRef
go back to reference Grelotti, D. J., Klin, A. J., Gauthier, I., Skudlarski, P., Cohen, D. J., Gore, J. C., et al. (2005). fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia, 43(3), 373–85.CrossRef Grelotti, D. J., Klin, A. J., Gauthier, I., Skudlarski, P., Cohen, D. J., Gore, J. C., et al. (2005). fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia, 43(3), 373–85.CrossRef
go back to reference Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. Lancet, 383(9920), 896–910.CrossRef Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. Lancet, 383(9920), 896–910.CrossRef
go back to reference Langdell, T. (1978). Recognition of faces: An approach for the study of autism. Journal of Child Psychology and Psychiatry, 19, 255–268.CrossRef Langdell, T. (1978). Recognition of faces: An approach for the study of autism. Journal of Child Psychology and Psychiatry, 19, 255–268.CrossRef
go back to reference Lau, W. K. W., Leung, M. K., & Lau, B. W. M. (2019). Resting-state abnormalities in autism spectrum disorders: A meta-analysis. Sci Rep, 9(1), 3892.CrossRef Lau, W. K. W., Leung, M. K., & Lau, B. W. M. (2019). Resting-state abnormalities in autism spectrum disorders: A meta-analysis. Sci Rep, 9(1), 3892.CrossRef
go back to reference Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., et al. (2020). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries, 69(4), 1–12.CrossRef Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., et al. (2020). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries, 69(4), 1–12.CrossRef
go back to reference Maglione, M. A., Gans, D., Das, L., Timbie, J., & Kasari, C. (2012). Nonmedical interventions for children with ASD: Recommended guidelines and further research needs. Pediatrics, 130(Suppl 2), S169–S178.CrossRef Maglione, M. A., Gans, D., Das, L., Timbie, J., & Kasari, C. (2012). Nonmedical interventions for children with ASD: Recommended guidelines and further research needs. Pediatrics, 130(Suppl 2), S169–S178.CrossRef
go back to reference Mahajan, R., & Mostofsky, S. H. (2015). Neuroimaging endophenotypes in autism spectrum disorder. CNS Spectrums, 20(4), 412–26.CrossRef Mahajan, R., & Mostofsky, S. H. (2015). Neuroimaging endophenotypes in autism spectrum disorder. CNS Spectrums, 20(4), 412–26.CrossRef
go back to reference Pennisi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., et al. (2016). Autism and social robotics: A systematic review. Autism Research, 9(2), 165–83.CrossRef Pennisi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., et al. (2016). Autism and social robotics: A systematic review. Autism Research, 9(2), 165–83.CrossRef
go back to reference Saadatzi, M. N., Pennington, R. C., Welch, K. C., & Graham, J. H. (2018). Small-group technology-assisted instruction: Virtual teacher and robot peer for individuals with autism spectrum dis- order. Journal of Autism and Developmental Disorders, 48(11), 3816–3830.CrossRef Saadatzi, M. N., Pennington, R. C., Welch, K. C., & Graham, J. H. (2018). Small-group technology-assisted instruction: Virtual teacher and robot peer for individuals with autism spectrum dis- order. Journal of Autism and Developmental Disorders, 48(11), 3816–3830.CrossRef
go back to reference Schifter, T., Hoffman, J. M., Hatten, H. P., Jr., Hanson, M. W., Coleman, R. E., & DeLong, G. R. (1994). Neuroimaging in infantile autism. Journal of Child Neurology, 9(2), 155–61.CrossRef Schifter, T., Hoffman, J. M., Hatten, H. P., Jr., Hanson, M. W., Coleman, R. E., & DeLong, G. R. (1994). Neuroimaging in infantile autism. Journal of Child Neurology, 9(2), 155–61.CrossRef
go back to reference Schultz, R. T., Grelotti, D. J., Klin, A., Kleinman, J., Van der Gaag, C., Marois, R., et al. (2003). The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philosophical Transactions of the Royal Society B: Biological Science, 358(1430), 415–27.CrossRef Schultz, R. T., Grelotti, D. J., Klin, A., Kleinman, J., Van der Gaag, C., Marois, R., et al. (2003). The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philosophical Transactions of the Royal Society B: Biological Science, 358(1430), 415–27.CrossRef
go back to reference Stoner, R. R., Chow, M. L. M., Boyle, M. P. M., et al. (2014). Patches of disorganization in the neocortex of children with autism. The New England Journal of Medicine, 370(13), 1209–19.CrossRef Stoner, R. R., Chow, M. L. M., Boyle, M. P. M., et al. (2014). Patches of disorganization in the neocortex of children with autism. The New England Journal of Medicine, 370(13), 1209–19.CrossRef
go back to reference Traut, N., Beggiato, A., Bourgeron, T., Delorme, R., Rondi-Reig, L., Paradis, A. L., et al. (2018). Cerebellar volume in autism: Literature meta-analysis and analysis of the autism brain imaging data exchange cohort. Biological Psychiatry, 83(7), 579–588.CrossRef Traut, N., Beggiato, A., Bourgeron, T., Delorme, R., Rondi-Reig, L., Paradis, A. L., et al. (2018). Cerebellar volume in autism: Literature meta-analysis and analysis of the autism brain imaging data exchange cohort. Biological Psychiatry, 83(7), 579–588.CrossRef
go back to reference van den Berk-Smeekens, I., van Dongen-Boomsma, M., De Korte, M.W.P., Den Boer, J.C., Oosterling, I.J., Peters-Scheffer, N.C., et al. (2020) Adherence and acceptability of a robot-assisted pivotal response treatment protocol for children with autism spectrum disorder 10(1), 8110. https://doi.org/10.1038/s41598-020-65048-3. van den Berk-Smeekens, I., van Dongen-Boomsma, M., De Korte, M.W.P., Den Boer, J.C., Oosterling, I.J., Peters-Scheffer, N.C., et al. (2020) Adherence and acceptability of a robot-assisted pivotal response treatment protocol for children with autism spectrum disorder 10(1), 8110. https://​doi.​org/​10.​1038/​s41598-020-65048-3.
go back to reference Virués-Ortega, J. (2010). Applied behavior analytic intervention for autism in early childhood: meta-analysis, meta-regression and dose-response meta-analysis of multiple outcomes. Clinical Psychology Review, 30(4), 387–99.CrossRef Virués-Ortega, J. (2010). Applied behavior analytic intervention for autism in early childhood: meta-analysis, meta-regression and dose-response meta-analysis of multiple outcomes. Clinical Psychology Review, 30(4), 387–99.CrossRef
go back to reference Yun, S. S., Choi, J., Park, S. K., Bong, G. Y., & Yoo, H. (2017). Social skills training for children with autism spectrum disorder using a robotic behavioral intervention system. Autism Research, 10(7), 1306–1323.CrossRef Yun, S. S., Choi, J., Park, S. K., Bong, G. Y., & Yoo, H. (2017). Social skills training for children with autism spectrum disorder using a robotic behavioral intervention system. Autism Research, 10(7), 1306–1323.CrossRef
Metagegevens
Titel
Brief Report: Neuroimaging Endophenotypes of Social Robotic Applications in Autism Spectrum Disorder
Auteurs
Antonio Cerasa
Liliana Ruta
Flavia Marino
Giuseppe Biamonti
Giovanni Pioggia
Publicatiedatum
18-09-2020
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 7/2021
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-020-04708-9