Skip to main content

Welkom bij THIM Hogeschool voor Fysiotherapie & Bohn Stafleu van Loghum

THIM Hogeschool voor Fysiotherapie heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL. Heb je een vraag, neem dan contact op met helpdesk@thim.nl.

Registreer

Om ook buiten de locaties van THIM, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van THIM.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top
Gepubliceerd in:

01-03-2009 | Original Article

Interaction of attention and temporal object priming

Auteurs: Frank Bauer, Marius Usher, Hermann J. Müller

Gepubliceerd in: Psychological Research | Uitgave 2/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Within a 3 × 3 matrix of 90° corner junctions, detection of a Kanizsa-type square is facilitated when the target display is preceded by a 40-Hz flickering premask of 3 × 3 crosses, with four crosses synchronously oscillating at the subsequent target location. To examine whether this ‘synchrony-priming’ effect is influenced by, or dependent on, visuo-spatial attention, a spatial-cueing manipulation was introduced. Observers were presented with a visual or acoustic cue which indicated the likely target quadrant. The main finding was that synchrony priming was larger for invalidly, compared with validly, cued locations, and that the priming effect was figural, rather than spatial, in nature (i.e., confined to points associated with the completed boundary, rather than extending to the inner region, defined by the synchronous premask elements). This pattern of effects argues that target processing is expedited not by attracting spatial attention to the primed location, but by the prime expediting (figure-specific) target encoding, as a result of which the target position gains a processing and selection advantage relative to non-primed locations.
Literatuur
go back to reference Bauer, F., Cheadle, S., Parton, A., Müller, H. J., & Usher, M. (2008). 50 Hz flicker triggers attentional selection without awareness. Unpublished manuscript (under review). Bauer, F., Cheadle, S., Parton, A., Müller, H. J., & Usher, M. (2008). 50 Hz flicker triggers attentional selection without awareness. Unpublished manuscript (under review).
go back to reference Blake, R., & Yang, Y. (1997). Spatial and temporal coherence in perceptual binding. Proceedings of the National Academy of Sciences USA, 94, 7115–7119.CrossRef Blake, R., & Yang, Y. (1997). Spatial and temporal coherence in perceptual binding. Proceedings of the National Academy of Sciences USA, 94, 7115–7119.CrossRef
go back to reference Conci, M., Müller, H. J., & Elliott, M. A. (2007). Closure of salient regions determines search for a collinear target configuration. Perception & Psychophysics, 69, 32–47. Conci, M., Müller, H. J., & Elliott, M. A. (2007). Closure of salient regions determines search for a collinear target configuration. Perception & Psychophysics, 69, 32–47.
go back to reference Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences USA, 81, 4586–4590.CrossRef Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences USA, 81, 4586–4590.CrossRef
go back to reference Davis, G., & Driver, J. (1994). Parallel detection of Kanizsa subjective figures in the human visual system. Nature, 371, 791–793.PubMedCrossRef Davis, G., & Driver, J. (1994). Parallel detection of Kanizsa subjective figures in the human visual system. Nature, 371, 791–793.PubMedCrossRef
go back to reference Donnelly, N., Humphreys, G. W., & Riddoch, M. J. (1991). Parallel computation of primitive shape descriptions. Journal of Experimental Psychology: Human Perception and Performance, 17, 561–570.PubMedCrossRef Donnelly, N., Humphreys, G. W., & Riddoch, M. J. (1991). Parallel computation of primitive shape descriptions. Journal of Experimental Psychology: Human Perception and Performance, 17, 561–570.PubMedCrossRef
go back to reference Driver, J., & Spence, C. (1998). Attention and the crossmodal construction of space. Trends Cognitive Sciences, 2, 254–262.CrossRef Driver, J., & Spence, C. (1998). Attention and the crossmodal construction of space. Trends Cognitive Sciences, 2, 254–262.CrossRef
go back to reference Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.PubMedCrossRef Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.PubMedCrossRef
go back to reference Eimer, M., & Schröger, E. (1998). ERP effects of intermodal attention and cross-modal links in spatial attention. Psychophysiology, 35, 313–327.PubMedCrossRef Eimer, M., & Schröger, E. (1998). ERP effects of intermodal attention and cross-modal links in spatial attention. Psychophysiology, 35, 313–327.PubMedCrossRef
go back to reference Elliott, M. A., & Müller, H. J. (1998). Synchronous information presented in 40-Hz flicker enhances visual feature binding. Psychological Science, 9, 277–283.CrossRef Elliott, M. A., & Müller, H. J. (1998). Synchronous information presented in 40-Hz flicker enhances visual feature binding. Psychological Science, 9, 277–283.CrossRef
go back to reference Elliott, M. A., & Müller, H. J. (2000). Evidence for a 40-Hz oscillatory short-term visual memory revealed by human reaction-time measurements. Journal of Experimental Psychology: Learning, Memory and Cognition, 26, 1–16.CrossRef Elliott, M. A., & Müller, H. J. (2000). Evidence for a 40-Hz oscillatory short-term visual memory revealed by human reaction-time measurements. Journal of Experimental Psychology: Learning, Memory and Cognition, 26, 1–16.CrossRef
go back to reference Elliott, M. A., & Müller, H. J. (2004). Synchronization and stimulus timing: Implications for temporal models of visual information processing. In C. Kaernbach, E. Schröger, & H. J. Müller (Eds.), Psychophysics beyond Sensation (pp. 137–156). Mahwah: Lawrence Erlbaum Associates. Elliott, M. A., & Müller, H. J. (2004). Synchronization and stimulus timing: Implications for temporal models of visual information processing. In C. Kaernbach, E. Schröger, & H. J. Müller (Eds.), Psychophysics beyond Sensation (pp. 137–156). Mahwah: Lawrence Erlbaum Associates.
go back to reference Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.PubMedCrossRef Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.PubMedCrossRef
go back to reference Fahle, M. (1993). Figure-ground discrimination from temporal information. Proceedings of the Royal Society London, B, 254, 199–203.CrossRef Fahle, M. (1993). Figure-ground discrimination from temporal information. Proceedings of the Royal Society London, B, 254, 199–203.CrossRef
go back to reference Fahle, M., & Koch, C. (1995). Spatial displacement, but not temporal asynchrony, destroys figural binding. Vision Research, 35, 491–494.PubMedCrossRef Fahle, M., & Koch, C. (1995). Spatial displacement, but not temporal asynchrony, destroys figural binding. Vision Research, 35, 491–494.PubMedCrossRef
go back to reference Finley, G. (1985). A high-speed point-plotter for vision research. Technical note. Vision Research, 25, 1993–1997.PubMedCrossRef Finley, G. (1985). A high-speed point-plotter for vision research. Technical note. Vision Research, 25, 1993–1997.PubMedCrossRef
go back to reference Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention. Science, 291, 1560–1563.PubMedCrossRef Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention. Science, 291, 1560–1563.PubMedCrossRef
go back to reference Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.PubMedCrossRef Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.PubMedCrossRef
go back to reference Gurnsey, R., Poirier, F. J., & Gascon, E. (1996). There is no evidence that Kanizsa-type subjective contours can be detected in parallel. Perception, 25, 861–874.PubMedCrossRef Gurnsey, R., Poirier, F. J., & Gascon, E. (1996). There is no evidence that Kanizsa-type subjective contours can be detected in parallel. Perception, 25, 861–874.PubMedCrossRef
go back to reference Jonides, J., & Mack, R. (1984). On the cost and benefit of cost and benefit. Psychological Bulletin, 96, 29–44.CrossRef Jonides, J., & Mack, R. (1984). On the cost and benefit of cost and benefit. Psychological Bulletin, 96, 29–44.CrossRef
go back to reference Kiper, D. C., Gegenfurtner, K. R., & Movshon, A. (1996). Cortical oscillatory responses do not affect visual segmentation. Vision Research, 36, 539–544.PubMedCrossRef Kiper, D. C., Gegenfurtner, K. R., & Movshon, A. (1996). Cortical oscillatory responses do not affect visual segmentation. Vision Research, 36, 539–544.PubMedCrossRef
go back to reference Köhler, W., Held, R., & O’Connell, D. N. (1952). An investigation of cortical currents. Proceedings of the American Philosophical Society, 96, 290–330. Köhler, W., Held, R., & O’Connell, D. N. (1952). An investigation of cortical currents. Proceedings of the American Philosophical Society, 96, 290–330.
go back to reference Lee, S.-H., & Blake, R. (1999). Visual form created solely from temporal structure. Science, 284, 1165–1168.PubMedCrossRef Lee, S.-H., & Blake, R. (1999). Visual form created solely from temporal structure. Science, 284, 1165–1168.PubMedCrossRef
go back to reference Lee, S.-H., & Blake, R. (2005). The Role of Temporal Structure in Human Vision. Behavioral and Cognitive Neuroscience Reviews, 4, 21–42.PubMedCrossRef Lee, S.-H., & Blake, R. (2005). The Role of Temporal Structure in Human Vision. Behavioral and Cognitive Neuroscience Reviews, 4, 21–42.PubMedCrossRef
go back to reference Leonards, U., Singer, W., & Fahle, M. (1996). The influence of temporal phase differences on texture segmentation. Vision Research, 36, 2689–2697.PubMedCrossRef Leonards, U., Singer, W., & Fahle, M. (1996). The influence of temporal phase differences on texture segmentation. Vision Research, 36, 2689–2697.PubMedCrossRef
go back to reference Lu, H., Morrison, R. G., Hummel, J. E., & Holyoak, K. J. (2006). Role of gamma-band synchronization in priming of form discrimination for multiobject displays. Journal of Experimental Psychology: Human Perception and Performance, 32, 610–617.PubMedCrossRef Lu, H., Morrison, R. G., Hummel, J. E., & Holyoak, K. J. (2006). Role of gamma-band synchronization in priming of form discrimination for multiobject displays. Journal of Experimental Psychology: Human Perception and Performance, 32, 610–617.PubMedCrossRef
go back to reference Moore, C. M., & Egeth, H. (1997). Perception without attention: evidence of grouping under conditions of inattention. Journal of Experimental Psychology: Human Perception and Performance, 23, 339–352.PubMedCrossRef Moore, C. M., & Egeth, H. (1997). Perception without attention: evidence of grouping under conditions of inattention. Journal of Experimental Psychology: Human Perception and Performance, 23, 339–352.PubMedCrossRef
go back to reference Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330.PubMedCrossRef Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330.PubMedCrossRef
go back to reference O’Grady, R., & Müller, H. J. (2000). Object-based selection operating on a grouped array of locations. Perception & Psychophysics, 62, 1655–1667. O’Grady, R., & Müller, H. J. (2000). Object-based selection operating on a grouped array of locations. Perception & Psychophysics, 62, 1655–1667.
go back to reference Parton, A., Donner, T. D., Donnelly, N., & Usher, M. (2006). Perceptual grouping based on temporal structure: Impact of subliminal flicker and visual transients. Visual Cognition, 13, 452–481.CrossRef Parton, A., Donner, T. D., Donnelly, N., & Usher, M. (2006). Perceptual grouping based on temporal structure: Impact of subliminal flicker and visual transients. Visual Cognition, 13, 452–481.CrossRef
go back to reference Pinto, Y., Olivers, C. N. L., & Theeuwes, J. (2008). The detection of temporally defined objects does not require focused attention. Quarterly Journal of Experimental Psychology, 61, 1134–1142.CrossRef Pinto, Y., Olivers, C. N. L., & Theeuwes, J. (2008). The detection of temporally defined objects does not require focused attention. Quarterly Journal of Experimental Psychology, 61, 1134–1142.CrossRef
go back to reference Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedCrossRef Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedCrossRef
go back to reference Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80, 127–158.PubMedCrossRef Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80, 127–158.PubMedCrossRef
go back to reference Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586.PubMedCrossRef Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586.PubMedCrossRef
go back to reference Spence, C., & Driver, J. (1997). Audiovisual links in exogenous covert spatial orienting. Perception & Psychophysics, 59, 1–22. Spence, C., & Driver, J. (1997). Audiovisual links in exogenous covert spatial orienting. Perception & Psychophysics, 59, 1–22.
go back to reference Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedCrossRef Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedCrossRef
go back to reference Usher, M., & Donnelly, N. (1998). Visual synchrony affects binding and segmentation in perception. Nature, 394, 179–182.PubMedCrossRef Usher, M., & Donnelly, N. (1998). Visual synchrony affects binding and segmentation in perception. Nature, 394, 179–182.PubMedCrossRef
go back to reference van der Togt, C., Kalitzin, S., Spekreijse, H., Lamme, V. A., & Supèr, H. (2006). Synchrony Dynamics in Monkey V1 predict Success in Visual Detection. Cerebral Cortex, 16, 148–163. van der Togt, C., Kalitzin, S., Spekreijse, H., Lamme, V. A., & Supèr, H. (2006). Synchrony Dynamics in Monkey V1 predict Success in Visual Detection. Cerebral Cortex, 16, 148–163.
go back to reference Vidal, J. R., Chaumon, M., O’Regan, J. K., & Tallon-Baudry, C. (2006). Visual grouping and the Focusing of Attention Induce Gamma-band Oscillations at Different Frequencies in Human magnetoencephalogram Signals. Journal of Cognitive Neuroscience, 18, 1850–1862.PubMedCrossRef Vidal, J. R., Chaumon, M., O’Regan, J. K., & Tallon-Baudry, C. (2006). Visual grouping and the Focusing of Attention Induce Gamma-band Oscillations at Different Frequencies in Human magnetoencephalogram Signals. Journal of Cognitive Neuroscience, 18, 1850–1862.PubMedCrossRef
go back to reference Ward, L. M., McDonald, J. J., & Lin, D. (2000). On asymmetries in cross-modal spatial attention orienting. Perception & Psychophysics, 62, 1258–1264. Ward, L. M., McDonald, J. J., & Lin, D. (2000). On asymmetries in cross-modal spatial attention orienting. Perception & Psychophysics, 62, 1258–1264.
go back to reference Wolfe, J. M. (1994). Guided search 2.0—a revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238. Wolfe, J. M. (1994). Guided search 2.0—a revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238.
Metagegevens
Titel
Interaction of attention and temporal object priming
Auteurs
Frank Bauer
Marius Usher
Hermann J. Müller
Publicatiedatum
01-03-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-008-0217-8