In two experiments, we investigated how short-term memory of kinesthetically defined spatial locations suffers from either motor or cognitive distraction. In Exp. 1, 22 blindfolded participants moved a handle with their right hand towards a mechanical stop and back to the start and then reproduced the encoded stop position by a second movement. The retention interval was adjusted to approximately 0 and 8 s. In half of the trials participants had to provide a verbal judgment of the target distance after encoding (cognitive distractor). Analyses of constant and variable errors indicated that the verbal judgments interfered with the motor reproduction only, when the retention interval was long. In Exp. 2, 22 other participants performed the same task but instead of providing verbal distance estimations they performed an additional movement either with their right or left hand during the retention interval. Constant error was affected by the side of the interpolated movement (right vs. left hand) and by the delay interval. The results show that reproduction of kinesthetically encoded spatial locations is affected differently in long- and short-retention intervals by cognitive and motor interference. This suggests that reproduction behavior is based on distinct codes during immediate vs. delayed recall.