Editorial
28 July 2015
Editorial: Measurement Invariance
Rens Van De Schoot
,
Peter Schmidt
,
Alain De Beuckelaer
,
Kimberley Lek
 and 
Marielle Zondervan-Zwijnenburg
37,315 views
253 citations
Editors
3
Impact
Loading...

We address the question of equivalence between modeling results obtained on intra-individual and inter-individual levels of psychometric analysis. Our focus is on the concept of measurement invariance and the role it may play in this context. We discuss this in general against the background of the latent variable paradigm, complemented by an operational demonstration in terms of a linear state-space model, i.e., a time series model with latent variables. Implemented in a multiple-occasion and multiple-subject setting, the model simultaneously accounts for intra-individual and inter-individual differences. We consider the conditions—in terms of invariance constraints—under which modeling results are generalizable (a) over time within subjects, (b) over subjects within occasions, and (c) over time and subjects simultaneously thus implying an equivalence-relationship between both dimensions. Since we distinguish the measurement model from the structural model governing relations between the latent variables of interest, we decompose the invariance constraints into those that involve structural parameters and those that involve measurement parameters and relate to measurement invariance. Within the resulting taxonomy of models, we show that, under the condition of measurement invariance over time and subjects, there exists a form of structural equivalence between levels of analysis that is distinct from full structural equivalence, i.e., ergodicity. We demonstrate how measurement invariance between and within subjects can be tested in the context of high-frequency repeated measures in personality research. Finally, we relate problems of measurement variance to problems of non-ergodicity as currently discussed and approached in the literature.

11,224 views
68 citations
17,955 views
46 citations
Original Research
23 October 2013

Measurement invariance (MI) is a pre-requisite for comparing latent variable scores across groups. The current paper introduces the concept of approximate MI building on the work of Muthén and Asparouhov and their application of Bayesian Structural Equation Modeling (BSEM) in the software Mplus. They showed that with BSEM exact zeros constraints can be replaced with approximate zeros to allow for minimal steps away from strict MI, still yielding a well-fitting model. This new opportunity enables researchers to make explicit trade-offs between the degree of MI on the one hand, and the degree of model fit on the other. Throughout the paper we discuss the topic of approximate MI, followed by an empirical illustration where the test for MI fails, but where allowing for approximate MI results in a well-fitting model. Using simulated data, we investigate in which situations approximate MI can be applied and when it leads to unbiased results. Both our empirical illustration and the simulation study show approximate MI outperforms full or partial MI In detecting/recovering the true latent mean difference when there are (many) small differences in the intercepts and factor loadings across groups. In the discussion we provide a step-by-step guide in which situation what type of MI is preferred. Our paper provides a first step in the new research area of (partial) approximate MI and shows that it can be a good alternative when strict MI leads to a badly fitting model and when partial MI cannot be applied.

16,367 views
201 citations