Skip to main content

Welkom bij THIM Hogeschool voor Fysiotherapie & Bohn Stafleu van Loghum

THIM Hogeschool voor Fysiotherapie heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL. Heb je een vraag, neem dan contact op met helpdesk@thim.nl.

Registreer

Om ook buiten de locaties van THIM, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van THIM.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top

2024 | OriginalPaper | Hoofdstuk

7. Strategieën en technieken bij het acute respiratory distress syndrome

Auteur : Hans ter Haar

Gepubliceerd in: Mechanische beademing op de intensive care

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Het acute respiratory distress syndrome (ARDS) gaat gepaard met een ernstig verstoorde gaswisseling en een hoge mortaliteit. Oxygenatieproblemen door shunting zijn het meest opvallend, hoewel de klaring van kooldioxide ook problematisch kan zijn door alveolaire doderuimteventilatie en het gebruik van kleine teugvolumes. Longbeschermend beademen spaart niet alleen longen, maar ook andere orgaansystemen en vormt de basis van een state of the art ARDS-behandeling. Het toepassen van aanvullende strategieën en technieken, zoals buikligging en spierverslapping, kan de prognose verder verbeteren.
Literatuur
1.
go back to reference Del Sorbo L, Slutsky AS. Acute respiratory distress syndrome and multiple organ failure. Curr Opin Crit Care. 2011;17(1):1–6.PubMedCrossRef Del Sorbo L, Slutsky AS. Acute respiratory distress syndrome and multiple organ failure. Curr Opin Crit Care. 2011;17(1):1–6.PubMedCrossRef
2.
go back to reference Montgomery AB, Stager MA, Carrico CJ, Hudson LD. Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1985;132:485–9.PubMed Montgomery AB, Stager MA, Carrico CJ, Hudson LD. Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1985;132:485–9.PubMed
3.
go back to reference The acute respiratory distress syndrome network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef The acute respiratory distress syndrome network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
4.
go back to reference Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43–4.PubMedCrossRef Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43–4.PubMedCrossRef
5.
go back to reference Dreyfuss D, Saumon G. Ventilator-induced lung injury. Am J Respir Crit Care Med. 1998;157:294–323.PubMedCrossRef Dreyfuss D, Saumon G. Ventilator-induced lung injury. Am J Respir Crit Care Med. 1998;157:294–323.PubMedCrossRef
6.
7.
go back to reference Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volumes should be used in patients without acute lung injury? Anesthesiology. 2007;106:1226–31.PubMedCrossRef Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volumes should be used in patients without acute lung injury? Anesthesiology. 2007;106:1226–31.PubMedCrossRef
8.
go back to reference Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.PubMedCrossRef Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.PubMedCrossRef
9.
go back to reference Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressurevolume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis. 1987;136:730–6. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressurevolume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis. 1987;136:730–6.
10.
go back to reference Roca O, Goligher EC, Amato MBP. Driving pressure: applying the concept at the bedside. Intensive Care Med. 2023;49:991–5.PubMedCrossRef Roca O, Goligher EC, Amato MBP. Driving pressure: applying the concept at the bedside. Intensive Care Med. 2023;49:991–5.PubMedCrossRef
11.
go back to reference Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.PubMedCrossRef Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.PubMedCrossRef
12.
go back to reference Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.PubMedPubMedCentralCrossRef Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.PubMedPubMedCentralCrossRef
13.
go back to reference Thind GS, Mireles-Cabodevila E, Chatburn RL, Duggal A. Evaluation of esophageal pressures in mechanically ventilated obese patients. Respir Care. 2022;67(2):184–90.PubMedCrossRef Thind GS, Mireles-Cabodevila E, Chatburn RL, Duggal A. Evaluation of esophageal pressures in mechanically ventilated obese patients. Respir Care. 2022;67(2):184–90.PubMedCrossRef
14.
go back to reference Gattinoni L, Pelosi P, Suter PM, et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Am J Respir Crit Care Med. 1998;158:3–11.PubMedCrossRef Gattinoni L, Pelosi P, Suter PM, et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Am J Respir Crit Care Med. 1998;158:3–11.PubMedCrossRef
15.
go back to reference Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.PubMedCrossRef Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.PubMedCrossRef
16.
go back to reference Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40:1578–85.PubMedCrossRef Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40:1578–85.PubMedCrossRef
17.
go back to reference Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.PubMedCrossRef Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.PubMedCrossRef
18.
go back to reference Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. J Intensive Care. 2015;3:18.PubMedPubMedCentralCrossRef Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. J Intensive Care. 2015;3:18.PubMedPubMedCentralCrossRef
19.
go back to reference Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.PubMedCrossRef Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.PubMedCrossRef
20.
go back to reference Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.PubMedCrossRef Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.PubMedCrossRef
21.
go back to reference Ferrando C, Suárez-Sipmann F, Gutierrez A, et al. Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance. Crit Care. 2015;19:9.PubMedPubMedCentralCrossRef Ferrando C, Suárez-Sipmann F, Gutierrez A, et al. Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance. Crit Care. 2015;19:9.PubMedPubMedCentralCrossRef
22.
go back to reference Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 2004;32:1018–27.PubMedCrossRef Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 2004;32:1018–27.PubMedCrossRef
23.
go back to reference IJland MM, Heunks LM, Hoeven JG Vander. Bench-to-bedside review: hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic’. Crit Care. 2010;14:237. IJland MM, Heunks LM, Hoeven JG Vander. Bench-to-bedside review: hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic’. Crit Care. 2010;14:237.
24.
go back to reference Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65. Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.
25.
go back to reference Gattinoni L, Carlesso E, Cadringher P, et al. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl. 2003;47:15S–25S.PubMedCrossRef Gattinoni L, Carlesso E, Cadringher P, et al. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl. 2003;47:15S–25S.PubMedCrossRef
26.
go back to reference Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41(4):1046–55.PubMedCrossRef Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41(4):1046–55.PubMedCrossRef
27.
go back to reference Chiumello D, Guérin C. Understanding the setting of PEEP from esophageal pressure in patients with ARDS. Intensive Care Med. 2015;41:1465–7.PubMedCrossRef Chiumello D, Guérin C. Understanding the setting of PEEP from esophageal pressure in patients with ARDS. Intensive Care Med. 2015;41:1465–7.PubMedCrossRef
28.
29.
go back to reference Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73.PubMedCrossRef Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73.PubMedCrossRef
30.
go back to reference Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164:1701–11.PubMedCrossRef Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164:1701–11.PubMedCrossRef
31.
go back to reference Pelosi P, Chiumello D, Calvi E, et al. Effects of different continuous positive airway pressure devices and periodic hyperinflations on respiratory function. Crit Care Med. 2001;29(9):1683–9.PubMedCrossRef Pelosi P, Chiumello D, Calvi E, et al. Effects of different continuous positive airway pressure devices and periodic hyperinflations on respiratory function. Crit Care Med. 2001;29(9):1683–9.PubMedCrossRef
32.
go back to reference Talmor DS, Fessler HE. Are esophageal pressure measurements important in clinical decision-making in mechanically ventilated patients? Respir Care. 2010;55(2):162–72.PubMed Talmor DS, Fessler HE. Are esophageal pressure measurements important in clinical decision-making in mechanically ventilated patients? Respir Care. 2010;55(2):162–72.PubMed
33.
go back to reference Tilmont A, Coiffard B, Yoshida T, et al. Oesophageal pressure as a surrogate of pleural pressure in mechanically ventilated patients. ERJ Open Res. 2021;7:00646–2020.PubMedPubMedCentralCrossRef Tilmont A, Coiffard B, Yoshida T, et al. Oesophageal pressure as a surrogate of pleural pressure in mechanically ventilated patients. ERJ Open Res. 2021;7:00646–2020.PubMedPubMedCentralCrossRef
34.
go back to reference Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.PubMedPubMedCentralCrossRef Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.PubMedPubMedCentralCrossRef
35.
go back to reference Beitler JR, Sarge T, Banner-Goodspeed VM, et al; for the EPVent-2 Study Group. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-FiO2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome. JAMA. 2019;321(9):846–57. Beitler JR, Sarge T, Banner-Goodspeed VM, et al; for the EPVent-2 Study Group. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-FiO2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome. JAMA. 2019;321(9):846–57.
36.
go back to reference Malbrain M, Chiumello D, Pelosi P, et al. Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med. 2004;30:822–9.PubMedCrossRef Malbrain M, Chiumello D, Pelosi P, et al. Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med. 2004;30:822–9.PubMedCrossRef
37.
go back to reference Walsh BK, Smallwood CD. Electrical impedance tomography during mechanical ventilation. Respir Care. 2016;61(10):1417–24.PubMedCrossRef Walsh BK, Smallwood CD. Electrical impedance tomography during mechanical ventilation. Respir Care. 2016;61(10):1417–24.PubMedCrossRef
38.
go back to reference Wolf GK, Gómez-Laberge C, Rettig JS, et al. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Crit Care Med. 2013;41:1296–304.PubMedCrossRef Wolf GK, Gómez-Laberge C, Rettig JS, et al. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Crit Care Med. 2013;41:1296–304.PubMedCrossRef
39.
go back to reference Costa EL, Borges JB, Melo A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–7.PubMedCrossRef Costa EL, Borges JB, Melo A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–7.PubMedCrossRef
40.
go back to reference Olegard C, Sondergaard S, Houltz E, et al. Estimation of the functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;101:206–12.PubMedCrossRef Olegard C, Sondergaard S, Houltz E, et al. Estimation of the functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;101:206–12.PubMedCrossRef
41.
go back to reference Dellacà RL, Zannin E, Kostic P, et al. Optimisation of positive end-expiratory pressure by forced oscillation technique in a lavage model of acute lung injury. Intensive Care Med. 2011;37:1021–30.PubMedCrossRef Dellacà RL, Zannin E, Kostic P, et al. Optimisation of positive end-expiratory pressure by forced oscillation technique in a lavage model of acute lung injury. Intensive Care Med. 2011;37:1021–30.PubMedCrossRef
42.
go back to reference Jonson B, Richard JC, Straus C, et al. Pressure-volume curves and compliance in acute lung injury. Evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med. 1999;159:1172–8. Jonson B, Richard JC, Straus C, et al. Pressure-volume curves and compliance in acute lung injury. Evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med. 1999;159:1172–8.
43.
go back to reference Maggiore SM, Jonson B, Richard JC, et al. Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury. Am J Respir Crit Care Med. 2001;164:795–801.PubMedCrossRef Maggiore SM, Jonson B, Richard JC, et al. Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury. Am J Respir Crit Care Med. 2001;164:795–801.PubMedCrossRef
44.
go back to reference Rimensberger PC, Cox PN, Frndova H, Bryan AC. The open lung during small tidal volume ventilation: concepts of recruitment and ‘optimal’ positive end-expiratory pressure. Crit Care Med. 1999;27(9):1946–52.PubMedCrossRef Rimensberger PC, Cox PN, Frndova H, Bryan AC. The open lung during small tidal volume ventilation: concepts of recruitment and ‘optimal’ positive end-expiratory pressure. Crit Care Med. 1999;27(9):1946–52.PubMedCrossRef
45.
go back to reference Koefoed-Nielsen J, Andersen G, Barklin A, et al. Maximal hysteresis: a new method to set positive end-expiratory pressure in acute lung injury? Acta Anaesthesiol Scand. 2008;52:641–9.PubMedCrossRef Koefoed-Nielsen J, Andersen G, Barklin A, et al. Maximal hysteresis: a new method to set positive end-expiratory pressure in acute lung injury? Acta Anaesthesiol Scand. 2008;52:641–9.PubMedCrossRef
46.
go back to reference Katz JA, Ozanne GM, Zinn SE, Fairley HB. Time course and mechanisms of lung-volume increase with PEEP in acute pulmonary failure. Anesthesiology. 1981;54(1):9–16.PubMedCrossRef Katz JA, Ozanne GM, Zinn SE, Fairley HB. Time course and mechanisms of lung-volume increase with PEEP in acute pulmonary failure. Anesthesiology. 1981;54(1):9–16.PubMedCrossRef
47.
go back to reference Suter PM, Fairley HB, Isenberg MD. Optimum end expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.PubMedCrossRef Suter PM, Fairley HB, Isenberg MD. Optimum end expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.PubMedCrossRef
48.
go back to reference Cavalcanti AB, Amato MBP, Serpa-Neto A. The elusive search for ‘Best PEEP’ and whether esophageal pressure monitoring helps. JAMA. 2019;321(9):839–41.PubMedCrossRef Cavalcanti AB, Amato MBP, Serpa-Neto A. The elusive search for ‘Best PEEP’ and whether esophageal pressure monitoring helps. JAMA. 2019;321(9):839–41.PubMedCrossRef
50.
go back to reference Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.PubMedCrossRef Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.PubMedCrossRef
51.
go back to reference Hedenstierna G. The hidden pulmonary dysfunction in acute lung injury. Intensive Care Med. 2006;32:1933–4.PubMedCrossRef Hedenstierna G. The hidden pulmonary dysfunction in acute lung injury. Intensive Care Med. 2006;32:1933–4.PubMedCrossRef
52.
go back to reference Guérin C, Reignier J, Richard JC, PROSEVA study group, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68. Guérin C, Reignier J, Richard JC, PROSEVA study group, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.
53.
go back to reference Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.PubMedCrossRef Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.PubMedCrossRef
54.
go back to reference Valenza F, Guglielmi M, Maffioletti M, et al. Prone position delays the progression of ventilator-induced lung injury in rats: does lung strain distribution play a role? Crit Care Med. 2005;33:361–7.PubMedCrossRef Valenza F, Guglielmi M, Maffioletti M, et al. Prone position delays the progression of ventilator-induced lung injury in rats: does lung strain distribution play a role? Crit Care Med. 2005;33:361–7.PubMedCrossRef
55.
go back to reference Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002;20:1017–28.PubMedCrossRef Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002;20:1017–28.PubMedCrossRef
56.
go back to reference Gattinoni L, Brusatori S, D’Albo R, et al. Prone position: how understanding and clinical application of a technique progress with time. Anesthesiol Perioperative Sci. 2023;1:3.CrossRef Gattinoni L, Brusatori S, D’Albo R, et al. Prone position: how understanding and clinical application of a technique progress with time. Anesthesiol Perioperative Sci. 2023;1:3.CrossRef
57.
go back to reference Vieillard-Baron A, Charron C, et al. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132(5):1440–6.PubMedCrossRef Vieillard-Baron A, Charron C, et al. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132(5):1440–6.PubMedCrossRef
58.
go back to reference Girard R, Baboi L, Ayzac L, PROSEVA trial group, et al. The impact of patient positioning on pressure ulcers in patients with severe ARDS: results from a multicentre randomised controlled trial on prone positioning. Intensive Care Med. 2014;40:397–403. Girard R, Baboi L, Ayzac L, PROSEVA trial group, et al. The impact of patient positioning on pressure ulcers in patients with severe ARDS: results from a multicentre randomised controlled trial on prone positioning. Intensive Care Med. 2014;40:397–403.
59.
go back to reference Harcombe C. Nursing patients with ARDS in the prone position. Nurs Stan. 2004;18(19):33–9.CrossRef Harcombe C. Nursing patients with ARDS in the prone position. Nurs Stan. 2004;18(19):33–9.CrossRef
60.
go back to reference Guérin C, Reignier J, Richard JC, PROSEVA study group, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68. Supplementary appendix. Guérin C, Reignier J, Richard JC, PROSEVA study group, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68. Supplementary appendix.
61.
go back to reference Hodgson C, Keating JL, Holland AE, et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation (Review). Cochrane Collab. 2012;6:1–33. Hodgson C, Keating JL, Holland AE, et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation (Review). Cochrane Collab. 2012;6:1–33.
62.
go back to reference Cavalcanti AB, Suzumura A, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome. The ART study JAMA. 2017;318(14):1335–45.PubMed Cavalcanti AB, Suzumura A, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome. The ART study JAMA. 2017;318(14):1335–45.PubMed
63.
go back to reference Constantin JM, Cayot-Constantin S, Roszyk L, et al. Response to recruitment maneuver influences net alveolar fluid clearance in acute respiratory distress syndrome. Anesthesiology. 2007;106:944–51.PubMedCrossRef Constantin JM, Cayot-Constantin S, Roszyk L, et al. Response to recruitment maneuver influences net alveolar fluid clearance in acute respiratory distress syndrome. Anesthesiology. 2007;106:944–51.PubMedCrossRef
64.
go back to reference Pelosi P, Cadringer P, Bottino N, et al. Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:872–80.PubMedCrossRef Pelosi P, Cadringer P, Bottino N, et al. Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:872–80.PubMedCrossRef
65.
go back to reference Arnal JM, Paquet J, Wysocki M, et al. Optimal duration of a sustained inflation recruitment maneuver in ARDS patients. Intensive Care Med. 2011;37:1588–94.PubMedCrossRef Arnal JM, Paquet J, Wysocki M, et al. Optimal duration of a sustained inflation recruitment maneuver in ARDS patients. Intensive Care Med. 2011;37:1588–94.PubMedCrossRef
66.
go back to reference Grasso S, Mascia L, Del Turco M, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002;96:795–802.PubMedCrossRef Grasso S, Mascia L, Del Turco M, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002;96:795–802.PubMedCrossRef
67.
go back to reference Pelosi P, Bottino N, Chiumello D, et al. Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167:521–7.PubMedCrossRef Pelosi P, Bottino N, Chiumello D, et al. Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167:521–7.PubMedCrossRef
68.
go back to reference Cakar N, Van der Kloot T, Youngblood M, et al. Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model. Am J Respir Crit Care Med. 2000;161:1949–56.PubMedCrossRef Cakar N, Van der Kloot T, Youngblood M, et al. Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model. Am J Respir Crit Care Med. 2000;161:1949–56.PubMedCrossRef
69.
go back to reference Mireles-Cabodevila E, Kacmarek M. Should airway pressure release ventilation be the primary mode in ARDS? Respir Care. 2016;61(6):761–73.PubMedCrossRef Mireles-Cabodevila E, Kacmarek M. Should airway pressure release ventilation be the primary mode in ARDS? Respir Care. 2016;61(6):761–73.PubMedCrossRef
70.
go back to reference Lunkenheimer PP, Rafflenbeul W, Keller H, et al. Application of transtracheal pressure oscillations as a modification of ‘diffusing respiration”. Br J Anaesth. 1972;44:627.PubMedCrossRef Lunkenheimer PP, Rafflenbeul W, Keller H, et al. Application of transtracheal pressure oscillations as a modification of ‘diffusing respiration”. Br J Anaesth. 1972;44:627.PubMedCrossRef
71.
go back to reference Young D, Lamb S, Shah S, OSCAR Study Group, et al. High-frequency oscillation for acute respiratory distress syndrome. NEJM. 2013;368:806–13. Young D, Lamb S, Shah S, OSCAR Study Group, et al. High-frequency oscillation for acute respiratory distress syndrome. NEJM. 2013;368:806–13.
72.
go back to reference Ferguson ND, Cook DJ, Guyatt GH, et al. for the OSCILLATE Trial Investigators and the Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805. Ferguson ND, Cook DJ, Guyatt GH, et al. for the OSCILLATE Trial Investigators and the Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805.
73.
go back to reference Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38(3):802–7.PubMedCrossRef Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38(3):802–7.PubMedCrossRef
74.
go back to reference Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.PubMedCrossRef Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.PubMedCrossRef
75.
go back to reference Hsu CW, Lee DL, Lin SL, et al. The initial response to inhaled nitric oxide treatment for intensive unit patients with acute respiratory distress syndrome. Respiration. 2008;75:288–95.PubMedCrossRef Hsu CW, Lee DL, Lin SL, et al. The initial response to inhaled nitric oxide treatment for intensive unit patients with acute respiratory distress syndrome. Respiration. 2008;75:288–95.PubMedCrossRef
76.
go back to reference Afshari A, Brok J, Møller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in acute lung injury in children and adults. Cochrane Database Syst Rev. 2010;7:CD002787. Afshari A, Brok J, Møller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in acute lung injury in children and adults. Cochrane Database Syst Rev. 2010;7:CD002787.
78.
go back to reference Gattinoni L, Pesenti A, Kolobow T, Damia G. A new look at therapy of the adult respiratory distress syndrome: motionless lungs. Int Anesthesiol Clin. 1983;21:97–117.PubMedCrossRef Gattinoni L, Pesenti A, Kolobow T, Damia G. A new look at therapy of the adult respiratory distress syndrome: motionless lungs. Int Anesthesiol Clin. 1983;21:97–117.PubMedCrossRef
79.
go back to reference Zanella A, Patroniti N, Isgrò S, et al. Blood acidification enhances carbon dioxide removal of membrane lung: an experimental study. Intensive Care Med. 2009;35:1484–7.PubMedCrossRef Zanella A, Patroniti N, Isgrò S, et al. Blood acidification enhances carbon dioxide removal of membrane lung: an experimental study. Intensive Care Med. 2009;35:1484–7.PubMedCrossRef
81.
go back to reference Neto AS, Pereira VGM, Espósito DC, et al. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2:33.PubMedPubMedCentralCrossRef Neto AS, Pereira VGM, Espósito DC, et al. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2:33.PubMedPubMedCentralCrossRef
82.
go back to reference Meduri GU, Marik PE, Chrousos GP, et al. Steroid treatment in ARDS: a critical appraisal of the ARDS network trial and the recent literature. Intensive Care Med. 2008;34:61–9.PubMedCrossRef Meduri GU, Marik PE, Chrousos GP, et al. Steroid treatment in ARDS: a critical appraisal of the ARDS network trial and the recent literature. Intensive Care Med. 2008;34:61–9.PubMedCrossRef
83.
go back to reference Tang BMP, Craig JC, Eslick GD, et al. Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2009;37(5):1594–603.PubMedCrossRef Tang BMP, Craig JC, Eslick GD, et al. Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2009;37(5):1594–603.PubMedCrossRef
85.
go back to reference Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2475–564. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2475–564.
86.
go back to reference Soni N, Williams P. Positive pressure ventilation: what is the real cost? Br J Anaesth. 2008;101:446–57.PubMedCrossRef Soni N, Williams P. Positive pressure ventilation: what is the real cost? Br J Anaesth. 2008;101:446–57.PubMedCrossRef
87.
go back to reference Constantin JM, Jaboudon M, Lefrant JY, et al. Personalized mechanical ventilation tailored to lung morphology versus low-positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med. 2019;7:870–80.PubMedCrossRef Constantin JM, Jaboudon M, Lefrant JY, et al. Personalized mechanical ventilation tailored to lung morphology versus low-positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med. 2019;7:870–80.PubMedCrossRef
88.
Metagegevens
Titel
Strategieën en technieken bij het acute respiratory distress syndrome
Auteur
Hans ter Haar
Copyright
2024
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-3031-7_7