This study segmented the time series of gaze behavior from nineteen children with autism spectrum disorder (ASD) and 20 children with typical development in a face-to-face conversation. A machine learning approach showed that behavior segments produced by these two groups of participants could be classified with the highest accuracy of 74.15%. These results were further used to classify children using a threshold classifier. A maximum classification accuracy of 87.18% was achieved, under the condition that a participant was considered as ‘ASD’ if over 46% of the child’s 7-s behavior segments were classified as ASD-like behaviors. The idea of combining the behavior segmentation technique and the threshold classifier could maximally preserve participants’ data, and promote the automatic screening of ASD.