The study of spatial cognition has benefited greatly from a technique known as the disorientation procedure. This procedure was originally used with rats to show that they relied on the geometry of an enclosed space to locate a target hidden in that space. Disorientation has since been used with a variety of mobile animals, including human children, to examine the coding of geometric information. Here, we focus mostly on our recent work with young children. We examine a set of issues concerning reorientation—namely, the nature of geometric coding, the processes invoked by disorientation, and the developmental origins of using geometric information to determine location. We have employed a variety of methods to examine these issues; the methods include analyzing search behaviors, using spaces of different shapes, varying viewing position, and comparing different disorientation procedures. The implications for how children and nonhuman animals code geometric information are discussed.