Skip to main content

Welkom bij THIM Hogeschool voor Fysiotherapie & Bohn Stafleu van Loghum

THIM Hogeschool voor Fysiotherapie heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL. Heb je een vraag, neem dan contact op met helpdesk@thim.nl.

Registreer

Om ook buiten de locaties van THIM, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van THIM.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top
Gepubliceerd in:

09-09-2020 | Special Section: Feedback Tools

Utilizing open-source platforms to build and deploy interactive patient-reported quality of life tracking tools for monitoring protocol adherence

Auteurs: Michael A. Golafshar, Molly Petersen, Carlos E. Vargas, N. Jewel Samadder, Katie L. Kunze, Nicole McCormick, Shelby A. Watkin, Diana Maleyeva, Tiffany W. Cheng, Manuel Vargas, Todd A. DeWees

Gepubliceerd in: Quality of Life Research | Uitgave 11/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

Tracking patient-reported outcomes (PROs) and quality-of-life response rates is essential for clinical trials. Historically, rates are monitored through scheduled reports, which can require gathering, merging, and cleaning data from multiple databases. At the end of this process, if gaps are found, new data are entered and the cycle repeats, leaving a trail of reports that are not up-to-date or immediately accessible to the investigator. The financial and person-hour cost of utilizing clinical research staff for this purpose is impractical. Online dashboards are continuously updated to monitor data, providing on-demand access to promote successful research.

Methods

Dashboard implementation utilizes R, an open-source statistical programming language, RMarkdown, a markup language, Flexdashboard, which creates structural elements, and Shiny, allowing investigators the ability to interact with data within the dashboard. By leveraging these four elements, powerful, cost-effective interactive dashboards can be built.

Results

Numerous dashboards have been utilized to identify potentially missing data and increase protocol adherence. Immediate patient consultation can occur to retrieve protocol-related forms, reducing research staff and patient burden while improving trial effectiveness. Dashboards can monitor PROs, enrollment, demographics, toxicity, and biomarker data, clinical outcomes, and implemented predictive models, creating a single hub for on-demand clinical trial monitoring.

Conclusion

By employing a set of freely available tools, the burden of utilizing study staff to continuously monitor trials is greatly reduced. These tools allow users to rapidly build and deploy dynamic dashboards capable of meeting the research needs of any investigator while limiting missing data through simplified monitoring of protocol adherence.
Literatuur
2.
go back to reference Smith, A. W., Mitchell, S. A., De Aguiar, C. K., Moy, C., Riley, W. T., Wagster, M. V., et al. (2016). News from the NIH: Person-centered outcomes measurement: NIH-supported measurement systems to evaluate self-assessed health, functional performance, and symptomatic toxicity. Translational Behavioral Medicine, 6(3), 470–474. https://doi.org/10.1007/s13142-015-0345-9.CrossRefPubMed Smith, A. W., Mitchell, S. A., De Aguiar, C. K., Moy, C., Riley, W. T., Wagster, M. V., et al. (2016). News from the NIH: Person-centered outcomes measurement: NIH-supported measurement systems to evaluate self-assessed health, functional performance, and symptomatic toxicity. Translational Behavioral Medicine, 6(3), 470–474. https://​doi.​org/​10.​1007/​s13142-015-0345-9.CrossRefPubMed
4.
go back to reference Mercieca-Bebber, R., Palmer, M. J., Brundage, M., Calvert, M., Stockler, M. R., & King, M. T. (2016). Design, implementation and reporting strategies to reduce the instance and impact of missing patient-reported outcome (PRO) data: A systematic review. British Medical Journal Open, 6(6), e010938. https://doi.org/10.1136/bmjopen-2015-010938.CrossRef Mercieca-Bebber, R., Palmer, M. J., Brundage, M., Calvert, M., Stockler, M. R., & King, M. T. (2016). Design, implementation and reporting strategies to reduce the instance and impact of missing patient-reported outcome (PRO) data: A systematic review. British Medical Journal Open, 6(6), e010938. https://​doi.​org/​10.​1136/​bmjopen-2015-010938.CrossRef
7.
go back to reference Simpao, A. F., Ahumada, L. M., Desai, B. R., Bonafide, C. P., Galvez, J. A., Rehman, M. A., et al. (2015). Optimization of drug-drug interaction alert rules in a pediatric hospital's electronic health record system using a visual analytics dashboard. Journal of the American Medical Informatics Association, 22(2), 361–369. https://doi.org/10.1136/amiajnl-2013-002538.CrossRefPubMed Simpao, A. F., Ahumada, L. M., Desai, B. R., Bonafide, C. P., Galvez, J. A., Rehman, M. A., et al. (2015). Optimization of drug-drug interaction alert rules in a pediatric hospital's electronic health record system using a visual analytics dashboard. Journal of the American Medical Informatics Association, 22(2), 361–369. https://​doi.​org/​10.​1136/​amiajnl-2013-002538.CrossRefPubMed
8.
go back to reference Cheng, C. K. Y., Ip, D. K. M., Cowling, B. J., Ho, L. M., Leung, G. M., & Lau, E. H. Y. (2011). Digital dashboard design using multiple data streams for disease surveillance with influenza surveillance as an example. Journal of Medical Internet Research, 13(4), e85.CrossRef Cheng, C. K. Y., Ip, D. K. M., Cowling, B. J., Ho, L. M., Leung, G. M., & Lau, E. H. Y. (2011). Digital dashboard design using multiple data streams for disease surveillance with influenza surveillance as an example. Journal of Medical Internet Research, 13(4), e85.CrossRef
11.
go back to reference Shih, D. C., Ho, K. C., Melnick, K. M., Rensink, R. A., Kollmann, T. R., & Fortuno, E. S. (2011). Facilitating the analysis of immunological data with visual analytic techniques. Jove-Journal of Visualized Experiments, 47, e2397. Shih, D. C., Ho, K. C., Melnick, K. M., Rensink, R. A., Kollmann, T. R., & Fortuno, E. S. (2011). Facilitating the analysis of immunological data with visual analytic techniques. Jove-Journal of Visualized Experiments, 47, e2397.
14.
go back to reference Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R Markdown: The definitive guide. Boca Raton: CRC Press.CrossRef Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R Markdown: The definitive guide. Boca Raton: CRC Press.CrossRef
16.
Metagegevens
Titel
Utilizing open-source platforms to build and deploy interactive patient-reported quality of life tracking tools for monitoring protocol adherence
Auteurs
Michael A. Golafshar
Molly Petersen
Carlos E. Vargas
N. Jewel Samadder
Katie L. Kunze
Nicole McCormick
Shelby A. Watkin
Diana Maleyeva
Tiffany W. Cheng
Manuel Vargas
Todd A. DeWees
Publicatiedatum
09-09-2020
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 11/2021
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-020-02617-z