Skip to main content

Welkom bij THIM Hogeschool voor Fysiotherapie & Bohn Stafleu van Loghum

THIM Hogeschool voor Fysiotherapie heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL. Heb je een vraag, neem dan contact op met helpdesk@thim.nl.

Registreer

Om ook buiten de locaties van THIM, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van THIM.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top
Gepubliceerd in:

03-09-2024 | Original Article

Specificity of Emotion Regulation Processes in Depression: A Network Analysis

Auteurs: Jente Depoorter, Rudi De Raedt, Matthias Berking, Kristof Hoorelbeke

Gepubliceerd in: Cognitive Therapy and Research | Uitgave 2/2025

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Background

Maladaptive emotion regulation has received a lot of attention as a potential mechanism underlying major depressive disorder (MDD). However, less is known about the role of adaptive emotion regulation skills and its specificity for MDD. The Adaptive Coping with Emotions model provides a framework for this, distinguishing early (Awareness, Sensations, Clarity, Understanding) and later processes (Modification, Acceptance, Tolerance, Readiness to confront and Effective Self-Support) relevant for emotion regulation.

Methods

The current study (N = 291) applied Network Analysis with Fused Graphical Lasso to jointly estimate emotion regulation networks in MDD (N = 160) and a control sample (N = 131). Within the two obtained network models, we investigated how different aspects of emotion regulation cluster together. In addition, level of centrality and unique associations between constructs were modeled. Permutation tests were applied to identify significant differences between both networks.

Results

Two communities were detected, with one including variables related to preparatory processes in emotion regulation and the other including variables related to regulation processes. Additionally, ‘Identifying and Labeling’ was ranked among the most central nodes. Furthermore, our results suggest similar pathways connecting emotion regulation skills in MDD and controls.

Conclusions

The results highlight the existence of different processes in emotion regulation and provide further evidence for emotion regulation as a transdiagnostic concept.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
In this context, it should be noted that the obtained edge accuracy and centrality stability indices likely provide an underestimation of the stability of the parameters presented in the current manuscript. That is, our results are based on a joint estimation procedure (FGL). However, this procedure has not been implemented in bootnet. As a result, in line with previous literature (e.g., Fried et al., 2018) evaluation of edge accuracy and centrality stability was based on network models (Supplemental Figs. 910) that were estimated for the subgroups separately (instead of relying on the full dataset, potentially resulting in reduced power). Similarly, node predictability was estimated for the subgroups separately. NCT took place on the subgroups, although reported correlations and SHD are based on the jointly estimated models. Tests for significant differences at a single-edge level were informed by the obtained SHD for the jointly estimated models.
 
Literatuur
go back to reference Berking, M., & Znoj, H. (2008). Entwicklung Und Validierung eines Fragebogens Zur Standardisierten Selbsteinschätzung emotionaler Kompetenzen (SEK-27) [Development and validation of the emotion-regulation skills Questionnaire, ERSQ-27]. Zeitschrift für Psychiatrie Psychologie und Psychotherapie, 56(2), 141–153. https://doi.org/10.1024/1661-4747.56.2.141CrossRef Berking, M., & Znoj, H. (2008). Entwicklung Und Validierung eines Fragebogens Zur Standardisierten Selbsteinschätzung emotionaler Kompetenzen (SEK-27) [Development and validation of the emotion-regulation skills Questionnaire, ERSQ-27]. Zeitschrift für Psychiatrie Psychologie und Psychotherapie, 56(2), 141–153. https://​doi.​org/​10.​1024/​1661-4747.​56.​2.​141CrossRef
go back to reference Bringmann, L. F., Albers, C., Bockting, C., Borsboom, D., Ceulemans, E., Cramer, A., Epskamp, S., Eronen, M. I., Hamaker, E., Kuppens, P., Lutz, W., McNally, R. J., Molenaar, P., Tio, P., Voekle, M. C., & Wichers, M. (2022). Psychopathological networks: Theory, methods and practice. Behaviour Research and Therapy, 149., Article 104011. https://doi.org/10.1016/j.brat.2021.104011 Bringmann, L. F., Albers, C., Bockting, C., Borsboom, D., Ceulemans, E., Cramer, A., Epskamp, S., Eronen, M. I., Hamaker, E., Kuppens, P., Lutz, W., McNally, R. J., Molenaar, P., Tio, P., Voekle, M. C., & Wichers, M. (2022). Psychopathological networks: Theory, methods and practice. Behaviour Research and Therapy, 149., Article 104011. https://​doi.​org/​10.​1016/​j.​brat.​2021.​104011
go back to reference Burger, J., Isvoranu, A. M., Lunansky, G., Haslbeck, J. M. B., Epskamp, S., Hoekstra, R. H. A., Fried, E. I., Borsboom, D., & Blanken, T. F. (2023). Reporting standards for psychological network analyses in cross-sectional data. Psychological Methods, 28(4), 806–824. https://doi.org/10.1037/met0000471CrossRefPubMed Burger, J., Isvoranu, A. M., Lunansky, G., Haslbeck, J. M. B., Epskamp, S., Hoekstra, R. H. A., Fried, E. I., Borsboom, D., & Blanken, T. F. (2023). Reporting standards for psychological network analyses in cross-sectional data. Psychological Methods, 28(4), 806–824. https://​doi.​org/​10.​1037/​met0000471CrossRefPubMed
go back to reference Costantini, G., Kappelmann, N., & Epskamp, S. (2021). EstimateGroupNetwork: Perform the Joint Graphical Lasso and Selects Tuning Parameters. R-package. Costantini, G., Kappelmann, N., & Epskamp, S. (2021). EstimateGroupNetwork: Perform the Joint Graphical Lasso and Selects Tuning Parameters. R-package.
go back to reference Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc Series B Stat Methodol, 76, 373–397. https://doi.org/10.111/rssb.12033CrossRefPubMed Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc Series B Stat Methodol, 76, 373–397. https://​doi.​org/​10.​111/​rssb.​12033CrossRefPubMed
go back to reference Derogatis, L. R. (1993). BSI brief Symptom Inventory. Administration, scoring and procedures manual (4th ed.). National Computer Systems. Derogatis, L. R. (1993). BSI brief Symptom Inventory. Administration, scoring and procedures manual (4th ed.). National Computer Systems.
go back to reference Eaton, N. R., Bringmann, L. F., Elmer, T., Fried, E. I., Forbes, M. K., Greene, A. L., Krueger, R. F., Kotov, R., McGorry, P. D., Mei, C., & Waszczuk, M. A. (2023). A review of approaches and models in psychopathology conceptualization research. Nature Reviews Psychology. https://doi.org/10.1038/s44159-023-00218-4CrossRef Eaton, N. R., Bringmann, L. F., Elmer, T., Fried, E. I., Forbes, M. K., Greene, A. L., Krueger, R. F., Kotov, R., McGorry, P. D., Mei, C., & Waszczuk, M. A. (2023). A review of approaches and models in psychopathology conceptualization research. Nature Reviews Psychology. https://​doi.​org/​10.​1038/​s44159-023-00218-4CrossRef
go back to reference Epskamp, S., & Fried, E. I. (2017). bootnet: Bootstrap Methods for Various Network Estimation Routines. R package. Epskamp, S., & Fried, E. I. (2017). bootnet: Bootstrap Methods for Various Network Estimation Routines. R package.
go back to reference Franke, G. H. (2000). Brief Symptom Inventory (BSI). Beltz. Franke, G. H. (2000). Brief Symptom Inventory (BSI). Beltz.
go back to reference Fried, E. I., Eidhof, M. B., Palic, S., Costantini, G., Huisman-van Dijk, H. M., Bockting, C. L. H., Engelhard, I., Armour, C., Nielsen, A. B. S., & Karstoft, K-I. (2018). Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: A cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clinical Psychological Science, 6, 335–351. https://doi.org/10.1177/2167702617745092CrossRefPubMedPubMedCentral Fried, E. I., Eidhof, M. B., Palic, S., Costantini, G., Huisman-van Dijk, H. M., Bockting, C. L. H., Engelhard, I., Armour, C., Nielsen, A. B. S., & Karstoft, K-I. (2018). Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: A cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clinical Psychological Science, 6, 335–351. https://​doi.​org/​10.​1177/​2167702617745092​CrossRefPubMedPubMedCentral
go back to reference Golino, H. F., Christensen, A., & Moulder, R. (2020). EGAnet: Exploratory graph analysis: A framework for estimating the number of dimensions in multivariate data using network psychometrics. R package. Golino, H. F., Christensen, A., & Moulder, R. (2020). EGAnet: Exploratory graph analysis: A framework for estimating the number of dimensions in multivariate data using network psychometrics. R package.
go back to reference Haslbeck, J. M. B., & Waldorp, L. J. (2018). How well do Network models predict observations? On the importance of predictability in Network models. Behavior Research, 50, 853–861. https://doi.org/10.3758-017-0910-xCrossRef Haslbeck, J. M. B., & Waldorp, L. J. (2018). How well do Network models predict observations? On the importance of predictability in Network models. Behavior Research, 50, 853–861. https://​doi.​org/​10.​3758-017-0910-xCrossRef
go back to reference Joormann, J., & Siemer, M. (2014). Emotion regulation in mood disorders. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 413–427). The Guilford Press. Joormann, J., & Siemer, M. (2014). Emotion regulation in mood disorders. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 413–427). The Guilford Press.
go back to reference Liu, H., Han, F., Yuan, M., Lafferty, J. D., & Wasserman, L. (2012). High-dimensional semiparametric gaussian copula graphical models. The Analysis of Statistics, 40(4), 2293–2326. Liu, H., Han, F., Yuan, M., Lafferty, J. D., & Wasserman, L. (2012). High-dimensional semiparametric gaussian copula graphical models. The Analysis of Statistics, 40(4), 2293–2326.
go back to reference Liverant, G. I., Kamholz, B. W., Sloan, D. M., & Brown, T. A. (2011). Rumination in clinical depression: A type of emotional suppression? Cognitive Therapy and Research, 35(3), 253–256. https://doi.org/0.1007/s10608-010-9304-4CrossRef Liverant, G. I., Kamholz, B. W., Sloan, D. M., & Brown, T. A. (2011). Rumination in clinical depression: A type of emotional suppression? Cognitive Therapy and Research, 35(3), 253–256. https://​doi.​org/​0.​1007/​s10608-010-9304-4CrossRef
go back to reference van Borkulo, C. D., Epskamp, S., & Millner, A. (2016). Network Comparison Test: Statistical comparison of two networks based on three invariance measures. R Package. van Borkulo, C. D., Epskamp, S., & Millner, A. (2016). Network Comparison Test: Statistical comparison of two networks based on three invariance measures. R Package.
go back to reference Zhao, T., Li, X., Liu, H., Roeder, K., Lafferty, J., & Wasserman, L. (2015). huge: High-Dimensional undirected graph. Zhao, T., Li, X., Liu, H., Roeder, K., Lafferty, J., & Wasserman, L. (2015). huge: High-Dimensional undirected graph.
Metagegevens
Titel
Specificity of Emotion Regulation Processes in Depression: A Network Analysis
Auteurs
Jente Depoorter
Rudi De Raedt
Matthias Berking
Kristof Hoorelbeke
Publicatiedatum
03-09-2024
Uitgeverij
Springer US
Gepubliceerd in
Cognitive Therapy and Research / Uitgave 2/2025
Print ISSN: 0147-5916
Elektronisch ISSN: 1573-2819
DOI
https://doi.org/10.1007/s10608-024-10530-9